HOMEWORK NUMBER TWO
Maynard
4.3
Show that if A, B ⊆ N are c.e. then A ∪ B and A ∩ B are c.e. To enumerate $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A \cup B$, interlace the enumerations of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$. To enumerate $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A \cap B$, enumerate $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$; for each element, enumerate $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ and emit the element only if it is present in $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$.
4.6
Prove that TFAE: (1) A is computably enumerable; (2) A is the range of a partial computable function; (3) A = ∅ or A is the range of a total computable function
(1 ⇒ 3)
Take $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ c.e. and nonempty. Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f : \bb N \to A$ be an enumeration of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$. Then $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ is total, computable, and we have $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{ran}(f) = A$.
(3 ⇒ 2)
If $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A = \varnothing$ then let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f = \varnothing$. Then $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ is partial computable and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{ran}(f) = \varnothing$. If $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A \neq \varnothing$ then we’re already done.
(2 ⇒ 1)
Take $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ the range of some partial computable $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f : \bb N \to \bb N$. Compute an enumeration $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \{ T_n \}$ of turing machines, where the $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n^\text{th}$ turing machine $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} T_n$ computes $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(n)$. Now perform a countably-infinite sequence of steps, where each step is defined as follows. On step $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} k$, advance machine $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} T_1$ by $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} k$ steps, emitting a result if one is produced, then advance $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} T_2$ by $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} k{-1}$ steps, emitting a result if one is produced, so on, up through advancing $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} T_k$ by $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} 0$ steps (ie, doing nothing). On each input $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$ for which $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ converges, this algorithm will eventually emit $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(n)$. Hence, since $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A = \text{ran}(f)$, this algorithm enumerates $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$.
4.10
Suppose A ⊆ N² is c.e. Then show that there is a partial computable function f : N → N such that f(x) is defined iff ∃y (x, y) ∈ A, and for every x ∈ dom(f), (x, f(x)) ∈ A. Given $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$, let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ be the algorithm accepting an input $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$ and enumerating through $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ until it finds a pair of the form $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} (x, y) \in A$. (If no pair exists, then $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(n)\loops$)
4.12
Suppose A is an infinite c.e. set. Show that there is an infinite computable subset B ⊆ A. Take any infinite c.e. $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A \subseteq \bb N$, and fix a computable enumeration $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E : \bb N \to A$ of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$. Define $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ to be the subset of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ consisting of values which, at their first occurence in $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$, are larger than all previous elements of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$
$% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ is computable — To find if $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n \in B$, enumerate through $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$ until you find $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$, keeping track of the largest value seen so far. Then see whether $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$ is larger.
$% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ is infinite — Any initial segment of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E_{\leq k}$ has a maximum value; call it $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} m$. Since $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ is infinite then it must contain a value $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$ larger than $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} m$, which $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$ will eventually enumerate. By the time $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$ emits $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$, either some other number(s) greater than $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} m$ have been emitted, in which one of them is an element of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$, or not, in which case $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n \in B$. In either case, there exists an element of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ outside of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E_{\leq k}$. Hence no initial segment of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$ contains all of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$, so $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ is infinite.
4.13
A c.e. set A is computable iff it has a computable enumeration that has a computable modulus.
(⇒)
Say $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ is computable. Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$ enumerate $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ by iterating through $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \bb N$ in order and emitting an element $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n \in \bb N$ when $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n \in A$ holds. Then one modulus for $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} E$ is $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} m : n \mapsto n$, which is computable.
(⇐)
Say $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ has computable enumeration $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} e : \bb N \to A$ with computable modulus $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} m : \bb N \to \bb N$. Then to test if $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in A$, test if $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in \text{ran}(e \restriction m(a))$
4.15
Show that there is a partial computable function f : N → N with no total computable extension g ⊇ f . That is, there is no total computable function g : N → N so that if x ∈ dom(f), then g(x) = f(x). Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(n) = \varphi_n(n)$ be partial computable. Assume towards contradiction that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} g$ is a total computable extension of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$. Now let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A = \{ n : g(n) = 0 \}$. Note that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ is a computable separation of the sets $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 = \{ \varphi_n(n) = 0 \} \hspace{{15pt}}\t{{and}}\hspace{{15pt}} A_1 = \{ \varphi_n(n) = 1 \}$ since $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ contains all of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0$ and none of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_1$. This is impossible, though, since $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_1$ are c.i.
4.17
Suppose A, B ⊆ N are disjoint co-c.e. Then show there is a computable set C such that A ⊆ C and C ∩ B = ∅ First observe that c.e. sets have the reduction property; that is, for $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A, B$ c.e. exists c.e. $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 \subseteq A$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0 \subseteq B$ disjoint and with $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 \cup B_0 = A \cup B$. This is true as follows. Take $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A, B$ c.e. We will, instead of producing two enumerations (one for $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0$ and one for $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0$), produce only one enumeration for $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} (A_0 \times \{0\}) \cup (B_0 \times \{1\})$, which is equivalent. Do so as follows. Initialize $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \cl S$ to an empty set of naturals. Begin enumerating over $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ in tandem. Upon enumerating $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in A$, check if $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in \cl S$; if not, add $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a$ to $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \cl S$ and emit $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} (a, 0)$. Likewise, upon enumerating over $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} b \in B$, check if $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} b \in \cl S$; if not, add $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} b$ to $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \cl S$ and emit $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} (b, 1)$. Every element in $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A \cup B$ will eventually be reached and emitted, so $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 \cup B_0 = A \cup B$. Also, by tracking via $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \cl S$ what’s already been enumerated, we ensure that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0$ are disjoint. Done! Hence c.e. sets have the reduction property. What remains to show is that this entails that co-c.e. sets are computably separable. This is true as follows. Take $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A, B \subseteq \bb N$ disjoint and co-c.e. Then $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \ol A$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \ol B$ are c.e., so due to the reduction property we have disjoint c.e. $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 \subseteq \ol A$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0 \subseteq \ol B$ with $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 \cup B_0 = \ol A \cup \ol B$. Since $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B$ are disjoint then in fact $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \ol A \cup \ol B = \bb N$ and so $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 \cup B_0 = \bb N$; hence $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0$ are complements of each other and both c.e., so they are both computable; thus $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0$ form a computable partition of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \bb N$. Recall that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0 \subseteq \ol B$, which entails that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0 \cap B = \varnothing$; also, since $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0 = \ol A_0$ and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A_0 \subseteq \ol A$ then $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A \subseteq B_0$. Hence $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} B_0$ is a computable separation of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A, B$.
5.2
Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \mathrm{TOT} = \{ x : \varphi_x \t{ is total} \}$. Show that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{TOT} \nleq_m K$. (Solved with catalysis from Chase) We show that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \ol K \leq_m \text{TOT}$. Then if it were that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{TOT} \leq_m K$ we’d have $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \ol K \leq_m K$, which is false. Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ be a function taking an index $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a$ and producing an index $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(a)$ for a program which takes an input $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$ and runs the computation $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_a(a)$ for $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$ steps, diverges if the computation halted, and converges if the computation did not halt. $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_a(a) \loops \iff \varphi_{f(a)} \t{ is total}$ie $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in \ol K \iff f(a) \in \text{TOT}$ which is a witness to $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \ol K \leq_m \text{TOT}$
5.6
Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_x \halts$ denote that the Turing machine $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} x$ halts on the empty input, and let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \tup{\cdot, \cdot} : \bb N^2 \to \bb N$ denote some computable bijection from $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \bb N^2$ to $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \bb N$. Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} K' = \{ x : \varphi_x(0)\halts \}$, and $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} K'' = \{ \tup{x, y} : \varphi_x(y)\halts \}$. Show that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} K \equiv_1 K' \equiv_1 K''$
$% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} K \leq_1 K'$:
Given any $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} x$, let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(x)$ compute the index for the turing machine computing $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n \mapsto \varphi_x(x)$. Note that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ is computable and that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_x(x)\halts \iff \varphi_{f(x)}(0)\halts$i.e., $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} x \in K \iff f(x) \in K'$ hence, $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ is witness to $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} K \leq_1 K'$
$% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} K' \leq_1 K''$:
Given any $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a$, let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(a)$ first compute the index $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} i$ for $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_a$; then $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(a)$ emits $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \tup{ i, 0 }$. Then $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_a(0)\halts \iff \varphi_{\pi_1(f(a))}(0)\halts$ Where $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \pi_1$ is the first-coordinate projection $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \tup{\bb N,\bb N} \to \bb N$. Then we have $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in K' \iff f(a) \in K''$
$% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} K'' \leq_1 K$:
Given any natural $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \tup{x,y}$, let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(\tup{x,y})$ compute the index for the turing machine computing $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n \mapsto \varphi_x(y)$. Then we have $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_x(y) \halts \iff \varphi_{f(\tup{x,y})}(f(\tup{x, y}))\halts$i.e., $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \tup{x,y} \in K'' \iff f(\tup{x,y}) \in K$
6.3
Show there is an e so that Wₑ = {e}; ie, so that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{dom}(\varphi_e) = \{e\}$ Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f(\varepsilon)$ be the total computable function taking some $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varepsilon$ to the index of a program which halts only on input $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varepsilon$ and diverges otherwise. By the amazing recursion theorem there exists $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} e$ so that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_e = \varphi_{f(e)}$, and by construction of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} f$ we know that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{dom}(\varphi_{f(e)}) = \{e\}$. Done.
6.6
Show there is no infinite c.e. set of minimal indices. Assume for contradiction we had some infinite c.e. set $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ of minimal indices. Let $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{succ}$ be a function which accepts some input $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$ and produces any $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in A$ greater than $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} n$; note $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{succ}$ is total because $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ is infinite. Then by the recursion theorem we know for some $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} e$ that $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \varphi_e = \varphi_{\text{succ}(e)}$. Hence $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{succ}(e)$ is not minimal, and yet by definition of $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{succ}$ we have $% shorthands \newcommand{\cl}{ \mathcal{#1} } \newcommand{\sc}{ \mathscr{#1} } \newcommand{\bb}{ \mathbb{#1} } \newcommand{\fk}{ \mathfrak{#1} } \renewcommand{\bf}{ \mathbf{#1} } \renewcommand{\sf}{ \mathsf{#1} } % category names \newcommand{\cat}{{ \sf{#1} }} % more shorthands \newcommand{\floor}{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}{ { \lceil {#1} \rceil } } \newcommand{\ol}{ \overline{#1} } \newcommand{\t}{ \text{#1} } \newcommand{\norm}{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{succ}(e) \in A$. Contradiction.