Syntheses
Syntheses
Notation:
T %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \cl T for the collection of all truths
lower-case letters for truths
upper-case letters for sets of truths
writing a,Bq,Rx %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } a, B \synto{q, R} x to mean that the synthesis {a}B{q}R %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \{a\} \cup B \cup \{q\} \cup R is x %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } x.
Axioms:
functionality — %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \synto{} is the graph of some function Σ:(2T{})T %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Sigma : (2^\cl T \setminus \{\varnothing\}) \to \cl T nb. Note that the empty set is not in the domain of Σ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Sigma!
identity — for each truth a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } a, we have that aa %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } a \synto{} a ie, Σ(a)=a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Sigma(a) = a ie, synthesizing a truth produces itself
idempotence — if As %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A \synto{} s then A,ss %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A, s \synto{} s ie, Σ(A,Σ(A))=Σ(A) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Sigma(A, \Sigma(A)) = \Sigma(A) ie, synthesis does not produce new information
distributivity — if As %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A \synto{} s andABs %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A \synto{B} s_\star then sBs %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } s \synto{B} s_\star ie, Σ(Σ(A),B)=Σ(A,B) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Sigma(\Sigma(A), B) = \Sigma(A, B) ie, if As %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A \synto{} s then s %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } s contains exactly as much truth as all of A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A together nb. this feels perhaps too strong nb. this trivially implies distributivity
boundedness — exists some truth %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \top st for every set A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A we have that A, %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A, \top \synto{} \top
unboundedness — for every set A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } A there exists some truth a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } a where Σ(A,a)A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Sigma(A, a) \notin A ie, we are never at the top nb. this is not just the syntactic negation of boundedness! Actually, I don’t even know if it’s equivalent to that..
Remark: boundedness and unboundedness are mutually exclusive. If distributivity is assumed (and hence Synto %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } Synto is a poset), then I think that exactly one of boundedness and unboundedness can be true.
%% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Synto
Given truths a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } a, b %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } b, we say that ab %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } a \Synto b iff exists a possibly-empty finite sequence of truth sets S=(Sn) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } S = ( S_n ) and truths s=(sn) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } s = ( s_n ) such that: aS1s1S2s2S3Sn1snSnb %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } a \synto{S_1} s_1 \synto{S_2} s_2 \synto{S_3} \cdots \synto{S_{n-1}} s_n \synto{S_n} b Then %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } \Synto forms at least a preorder, forming stronger structures the more you assume
Question — what would it take for (T,) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \newcommand{\synto}[1]{ \overset{#1}{\longmapsto} } \newcommand{\Synto}{ \rightrightarrows } (\cl T, \Synto) to be bounded above?