Let
S e t ∂
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}^\partial Set ∂ denote the
category whose
objects are
sets and
morphisms are
partial functions between
sets . Let
S e t ⋆
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}_\star Set ⋆ denote the
category of pointed
sets , whose
objects are pairs
( X , x )
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
(X, x) ( X , x ) of a
set X
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
X X and a basepoint point
x ∈ X
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
x \in X x ∈ X and whose
morphisms are
functions preserving the basepoint. Then I claim that
S e t ∂ ≃ S e t ⋆
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}^\partial \simeq \cat{Set}_\star Set ∂ ≃ Set ⋆
The intuition for this is that we have a ‘natural’ identification between
partial functions and total
functions on pointed
sets as follows. If
f : X → Y
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
f : X \to Y f : X → Y is
partial , then letting
⊥ ∉ Y
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\bot \notin Y ⊥ ∈ / Y we identify
f
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
f f with the
function pt ( f ) : X → Y ∪ { ⊥ }
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\text{pt}(f) : X \to Y \cup \{\bot\} pt ( f ) : X → Y ∪ { ⊥ } which is equal to
f
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
f f but sends all points not in the domain of
f
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
f f to
⊥
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\bot ⊥ . We perform this identification over the entire
category S e t ∂
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}^\partial Set ∂ by choosing some basepoint
⊥ A ∉ A
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\bot_A \notin A ⊥ A ∈ / A for each
set A
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
A A and then lifting each
partial function f : X → Y
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
f : X \to Y f : X → Y to its associated total
function pt ( f ) : ( X ∪ { ⊥ X } ) → ( Y ∪ { ⊥ Y } )
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\text{pt}(f) : (X \cup \{\bot_X\}) \to (Y \cup \{\bot_Y\}) pt ( f ) : ( X ∪ { ⊥ X }) → ( Y ∪ { ⊥ Y }) . Each basepoint
⊥ A
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\bot_A ⊥ A acts as a kind of “error” value or “undefined” value
1 .
Any javascript lovers in the crowd? BTW for the Haskell folk this is exactly Haskell’s ⊥
Also, it’s not just the case that
S e t ∂
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}^\partial Set ∂ and
S e t ⋆
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}_\star Set ⋆ are equivalent, it’s
also true that they’
re non-
isomorphic 2 . As such, this example also serves to justify why
isomorphism is not the right notion of
category equality.
One way to see this is to note that:
S e t ∂
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}^\partial Set ∂ has only one
initial object , the empty
set
in
S e t ⋆
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}_\star Set ⋆ every singleton
set is
initial , so the
category has an infinite number of
initial objects
To show that
S e t ∂ ≃ S e t ∗
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\cat{Set}^\partial \simeq \cat{Set}_* Set ∂ ≃ Set ∗ we need produce
functors going between the two
categories ; we’ll call them
pt : S e t ∂ → S e t ∗ un : S e t ∗ → S e t ∂
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\begin{align*} \text{pt} &: \cat{Set}^\partial \to \cat{Set}_*
\\{} \text{un} &: \cat{Set}_* \to \cat{Set}^\partial
\end{align*} pt un : Set ∂ → Set ∗ : Set ∗ → Set ∂
We’ll also need to produce two
natural transformations . But
functors first.
As per the intuition discussed, we define these
functors as follows. For every
set A
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
A A , let
⊥ A
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\bot_A ⊥ A be some
set not in
A
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
A A . Also let
A ∗
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
A^* A ∗ denote
A ∪ { ⊥ A }
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
A \cup \{\bot_A\} A ∪ { ⊥ A } . Then let
pt ( A ) = ( A ∗ , ⊥ A ) pt ( f : A → B ) = ( a ↦ { ⊥ B a = ⊥ A f ( a ) a ∈ dom ( f ) ⊥ B a ∉ dom ( f ) ) : A ∗ → B ∗
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\begin{align*} \text{pt}(A) &= (A^*, \bot_A)
\\
\\{} \text{pt}(f : A \to B) &= \left( a \mapsto \begin{cases}
\bot_B && a = \bot_A
\\ f(a) && a \in \text{dom}(f)
\\ \bot_B && a \notin \text{dom}(f)
\end{cases} \right) : A^* \to B^*
\end{align*} pt ( A ) pt ( f : A → B ) = ( A ∗ , ⊥ A ) = ⎝ ⎛ a ↦ ⎩ ⎨ ⎧ ⊥ B f ( a ) ⊥ B a = ⊥ A a ∈ dom ( f ) a ∈ / dom ( f ) ⎠ ⎞ : A ∗ → B ∗ and also let
un ( ( A , a ) ) = A un ( f : A ∗ → B ∗ ) = f with domain restricted to A and codomain to B
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\begin{align*} \text{un}((A, a)) &= A
\\{} \text{un}(f : A^* \to B^*) &= f \t{{ \text{with} \text{domain} \text{restricted} \text{to} }} A \t{{ \text{and} \text{codomain} \text{to} }} B
\end{align*} un (( A , a )) un ( f : A ∗ → B ∗ ) = A = f with domain restricted to A and codomain to B
We’ll grant that these are indeed
functors . Now we need construct some
natural isomorphisms . We’ll call them
α : id S e t ∂ ≅ un ∘ pt β : id S e t ∗ ≅ pt ∘ un
%% general %%
% shorthands
\newcommand{\cl}[1]{ \mathcal{#1} }
\newcommand{\sc}[1]{ \mathscr{#1} }
\newcommand{\bb}[1]{ \mathbb{#1} }
\newcommand{\fk}[1]{ \mathfrak{#1} }
\renewcommand{\bf}[1]{ \mathbf{#1} }
\renewcommand{\sf}[1]{ \mathsf{#1} }
\renewcommand{\rm}[1]{ \mathrm{#1} }
\newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } }
\newcommand{\ceil}[1]{ { \lceil {#1} \rceil } }
\newcommand{\ol}[1]{ \overline{#1} }
\newcommand{\t}[1]{ \text{#1} }
\newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE)
\newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude
\newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag
\newcommand{\card}{ \t{cd} } % cardinality
\newcommand{\dcup}{ \sqcup } % disjoint untion
\newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples
\newcommand{\tl}{ \tilde }
\newcommand{\wt}{ \widetilde }
\newcommand{\To}{ \Rightarrow }
% draw a box outlining some math
\newcommand{\box}[1]{ \fbox{$ #1 $} }
% f \onall X = { f(x) : x ∈ X }
\newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } }
% shorthands: various brackets
\newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens"
\newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets"
\newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces"
% reverse \mapsto (FIXME: make better)
%\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} }
\newcommand{\mapsfrom}{ \mathrel{↤} }
% reverse-order composition
\newcommand{\then}{ \operatorname{\ ;\ } }
% Like f' represents "f after modification", \pre{f}
% represents "f before modification"
% TODO: remove this?
\newcommand{\pre}[1]{{ \small `{#1} }}
% hook arrows
\newcommand{\injects}{ \hookrightarrow }
\newcommand{\embeds}{ \hookrightarrow }
\newcommand{\surjects}{ \twoheadrightarrow }
\newcommand{\projects}{ \twoheadrightarrow }
\newcommand{\id}{ \,\mathrm d } % integration d
% derivatives: use {\ddn n x y} for (dy/dx)
\newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative
\newcommand{\dd}{ \ddn{} } % first derivative
\newcommand{\d}{ \dd{} } % first derivative (no numerator)
\newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator)
% derivatives: use {\D n x y} for (∂_x y)
\newcommand{\Dn}[2]{ \partial^{#1}_{#2} }
\newcommand{\D}{ \Dn{} } % no power
\newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral
%% category theory %%
% category names
\newcommand{\cat}[1]{{ \sf{#1} }}
% yoneda embedding
\newcommand{\yo}{よ}
% extra long right-arrows
\newcommand{\X}{-\!\!\!-\!\!\!}
\newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } }
\newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } }
\newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } }
\newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} }
\newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} }
\newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} }
\newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} }
\newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} }
% represents an anonymous parameter
% eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$
% TODO: remove this?
\newcommand{\apar}{ {-} }
%% computability %%
% turing machines
\newcommand{\halts}{ {\downarrow} }
\newcommand{\loops}{ {\uparrow} }
\begin{align*} \alpha &: \text{id}_{\cat{Set}^\partial} \cong \text{un} \circ \text{pt}
\\ \beta &: \text{id}_{\cat{Set}_*} \cong \text{pt} \circ \text{un}
\end{align*} α β : id Set ∂ ≅ un ∘ pt : id Set ∗ ≅ pt ∘ un
I feel too tired to
complete this :(