Set Theory HW #11
p200 ex23
Take A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A a set and let α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha be the set of ordinals that inject into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A. Show that α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha is the least cardinal greater than cd(A) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \card(A).
α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha is a cardinal:
α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha is transitive — Take abα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \in b \in \alpha. Then b %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } b is an ordinal which injects into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A. Since b %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } b is an ordinal, then it is transitive so ab %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \subseteq b, so also a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a injects into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A. Also, since b %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } b is an ordinal and ab %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \in b then a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a is an ordinal. Thus a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a is an ordinal that injects into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A, so aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \in \alpha.
α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \in_\alpha is linear — Given a,bα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a, b \in \alpha distinct, both a %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a and b %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } b are ordinals, so exactly one of ab %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \in b and ba %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } b \in a hold; done.
If aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \in \alpha then aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \ncong \alpha — Note that ¬(Aα) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \neg(A \surjects \alpha), as follows. Assume f:Aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } f : A \to \alpha, and let β=fA %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta = f \llbracket A \rrbracket. Then β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta is a set of ordinals injecting into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A. If β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta has no %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \in-maximum, then let m=β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m = \bigcup \beta; since m %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m is a union of ordinals injecting into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A then also m %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m injects into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A (the truth of this has been divined directly from the Platonic Realm and requires no proof). Also m %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m is a maximum of β{m} %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta \cup \{m\}; since β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta has no maximum then it must be that mβ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m \notin \beta. Hence mαβ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m \in \alpha \setminus \beta, so βα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta \neq \alpha. If, on the other hand, β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta has an %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \in-maximum, then let m %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m be max(β)+1 %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \max(\beta) + 1; again mαβ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } m \in \alpha \setminus \beta and so βα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta \neq \alpha. Either way βα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta \neq \alpha and so f %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } f is not a surjection. Now assume for contradiction that exists an aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \in \alpha with aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \cong \alpha. Since aA %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \injects A and aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } a \cong \alpha then αA %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha \injects A and so Aα %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A \surjects \alpha; contradiction.
α>cd(A) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha > \card(A): We saw above that that ¬(Aα) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \neg(A \surjects \alpha), so cd(A)α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \card(A) \ngeq \alpha. Since %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \in is linear over cardinals, then it must be that α>cd(A) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha > \card(A).
α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha is least: Take β>cd(A) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta > \card(A). If an ordinal γ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \gamma abides by cd(γ)<cd(A) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \card(\gamma) < \card(A) then γcd(A)<β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \gamma \in \card(A) < \beta so γβ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \gamma \in \beta. Hence all ordinals γ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \gamma injecting into A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A must lie in β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta, so αβ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha \subseteq \beta. Thus α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha is minimal, and by linearity of %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \subseteq on cardinals α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha is least.
p200 ex25
Take an arity-1 formula ϕ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \phi. Assume that for every ordinal α %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \alpha we know (xα)(ϕ(x))ϕ(α) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } (\forall x \in \alpha)( \phi(x) ) \to \phi(\alpha). Show then that ϕ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \phi holds on every ordinal. Take ϕ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \phi and an ordinal β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta. Let A={aβ:ϕ(a)} %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A = \{ a \in \beta : \phi(a) \}. Take tβ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } t \in \beta with seg(t)A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \t{seg}(t) \subseteq A; then t %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } t is an ordinal abiding by (xt)(ϕ(x)) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } (\forall x \in t)(\phi(x)) and so by assumption we get ϕ(t) %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \phi(t). Hence when seg(t)A %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \t{seg}(t) \subseteq A we have tA %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } t \in A, so by the transfinite induction principle we have that A=β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } A = \beta. Therefore ϕ %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \phi holds over all of β %% general %% % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \renewcommand{\rm}[1]{ \mathrm{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude (REMOVE) \newcommand{\mag}[1]{ { \left\lvert {#1} \right\rvert } } % magnitude \newcommand{\smag}[1]{ { \lvert {#1} \rvert } } % short mag \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples \newcommand{\tl}{ \tilde } \newcommand{\wt}{ \widetilde } \newcommand{\To}{ \Rightarrow } % draw a box outlining some math \newcommand{\box}[1]{ \fbox{$ #1 $} } % f \onall X = { f(x) : x ∈ X } \newcommand{\onall}[1]{ { \llbracket {#1} \rrbracket } } % shorthands: various brackets \newcommand{\tpar}[1]{ \left( {#1} \right) } % "tall parens" \newcommand{\tbrak}[1]{ \left[ {#1} \right] } % "tall brackets" \newcommand{\tbrac}[1]{ \left\{ {#1} \right\} } % "tall braces" % reverse \mapsto (FIXME: make better) %\newcommand{\mapsfrom}{ \mathop{\leftarrow\!\mid} } \newcommand{\mapsfrom}{ \mathrel{↤} } % reverse-order composition \newcommand{\then}{ \operatorname{\ ;\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" % TODO: remove this? \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } \newcommand{\id}{ \,\mathrm d } % integration d % derivatives: use {\ddn n x y} for (dy/dx) \newcommand{\ddn}[3]{ \frac{ {\mathrm d}^{#1} {#2} }{ {\mathrm d} {#3}^{#1} } } % nth derivative \newcommand{\dd}{ \ddn{} } % first derivative \newcommand{\d}{ \dd{} } % first derivative (no numerator) \newcommand{\dn}[1]{ \ddn{#1}{} } % nth derivative (no numerator) % derivatives: use {\D n x y} for (∂_x y) \newcommand{\Dn}[2]{ \partial^{#1}_{#2} } \newcommand{\D}{ \Dn{} } % no power \newcommand{\ig}[2]{ \int {#2} \, \mathrm d {#1} } % first integral %% category theory %% % category names \newcommand{\cat}[1]{{ \sf{#1} }} % yoneda embedding \newcommand{\yo}{よ} % extra long right-arrows \newcommand{\X}{-\!\!\!-\!\!\!} \newcommand{\xlongrightarrow}{ \mathop{ \, \X\longrightarrow \, } } \newcommand{\xxlongrightarrow}{ \mathop{ \, \X\X\longrightarrow \, } } \newcommand{\xxxlongrightarrow}{ \mathop{ \, \X\X\X\longrightarrow \, } } \newcommand{\takenby}[1]{ \overset{#1}{\rightarrow} } \newcommand{\longtakenby}[1]{ \overset{#1}{\longrightarrow} } \newcommand{\xlongtakenby}[1]{ \overset{#1}{\xlongrightarrow} } \newcommand{\xxlongtakenby}[1]{ \overset{#1}{\xxlongrightarrow} } \newcommand{\xxxlongtakenby}[1]{ \overset{#1}{\xxxlongrightarrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ % TODO: remove this? \newcommand{\apar}{ {-} } %% computability %% % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } \beta.