Model Thy HW #2
Maynard (legally, Eli Maynard)
4.5.1
(a) Take $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M = (X, <)$ a dense linear order. Show that any two elements of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} X$ realize the same 1-type over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \varnothing$. Answer revised since previous submission Take $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x_1, x_2 \in X$. WTS that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(x_1 / \varnothing) = \t{tp}^\cl M(x_2 / \varnothing)$. In other words, WTS that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x_1$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x_2$ satisfy the same 1-ary $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_\varnothing$-formulas in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M$. Take some 1-ary $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L$-formula $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \rho$ for which $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M \vDash \rho(x_1)$. Since DLO admits quantifier elimination, and since our language has no function- or constant- symbols, then WLOG $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \rho$ is a boolean combination of the two atomic formulas $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x_1 < x_1$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x_1 = x_1$. The evaluation of such a sentence does not depend on the choice of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x_1$, and so $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M \vDash \rho(x_1) \iff \cl M \vDash \rho(x_2)$, and so the types in question are the same.
(b) Show that for $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a, b \in \bb Q$, $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\bb Q(a / \bb N) = \t{tp}^\bb Q(b / \bb N)$ exactly when $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q$ admits an automorphism fixing $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb N$ and taking $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ to $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$. Answer NOT revised since previous submission I’m assuming our language is $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L = \{ < \}$? (⇒) Assume $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$ have the same type over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb N$. If either $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ or $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$ satisfy the proposition $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi(x) := (x = n)$ for some $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n \in \bb N$, then we know the other does too and hence $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a = b = n$. In this case, the identity function is a satisfactory automorphism. Otherwise, one of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ or $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$ does not satisfy the given $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ for any $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n$; WLOG assume it’s $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$. Then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ is non-integral, so for some $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n \in \bb N$, $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ satisfies $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \psi(x) = n < x < n+1$. Since $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$ share a type, then also $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M_\bb N \vDash \psi(b)$. This means that both $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$ lie in some open range $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} (n, n+1)$. Let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma$ be an automorphism over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} ((n,n+1), <)$ taking $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ to $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$ (one exists by thinking of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} ((n,n+1),<)$ as a smaller copy of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} (\bb Q, <)$). Let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \tilde \sigma$ be $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma$ lifted to $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} (\bb Q, <)$ by acting as the identity everywhere else. Then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \tilde \sigma$ is a satisfactory automorphism. (⇐) Call such an automorphism $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma$, and take $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi \in \t{tp}^\bb Q(a / \bb N)$. Then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ is a 1-ary $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_\bb N$-formula satisfied by $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q_\bb N$ where $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q_\bb N$ denotes the natural extension of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q$ into $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_\bb N$-formulas. Construct a new formula by replacing each constant symbol $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n \in \bb N$ ocurring in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ with a variable symbol $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} v_n$; call the result $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$ and let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol n$ be the tuple of all such $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n$. Then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$ is an $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L$-sentence of arity greater than 1 such that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q \vDash \phi'(a, \ol n)$. Since $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma$ is an automorphism of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q$ then also $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q \vDash \phi'(\sigma(a), \sigma(\ol n))$; since $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma$ fixes all $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n \in \bb N$ and takes $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ to $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} b$ then by substitution $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q \vDash \phi'(b, \ol n)$. Now replacing each variable $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} v_n$ in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$ with $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n$ we recover the $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_\bb N$-formula $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ and conclude that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q_\bb N \vDash \phi(b)$ and hence $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi \in \t{tp}^\bb Q(b / \bb N)$.
(c) Take $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A = \{1 - n^{-1} : n \in \bb N\} \cup \{ 2 + n^{-1} : n \in \bb N \}$. Show that 1 and 2 realize the same type over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$, but there is no automorphism of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q$ fixing $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$ and sending 1 to 2. Answer revised since previous submission (both parts) (pt1) Take $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi \in \t{tp}(1/A)$. Note that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L$ has no constant or function symbols, so $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ has as terms only variables and constant symols from $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$. Let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ be those constant symbols and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$ be $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ with $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ replaced by free variables, so that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q_A \vDash \phi(x) \iff \bb Q \vDash \phi'(x, \ol a)$ Then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q \vDash \phi'(1, \ol a)$. But DLO admits quantifier elimination, so WLOG $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$ is quantifier-free and thus a boolean combination over atomic sentences of the form $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \square < \square$ or $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \square = \square$ where each $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \square$ is populated by either the free variable $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x$ or a free variable $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a \in \ol a$. Any such atomic sentence produces the same result when evaluated on $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x = 1$ versus $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x = 2$. Inequalities $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x < a_i$ are true exactly when $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a_i > 2$, and inequalities $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a_i < x$ exactly when $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a_i < 1$; equalities $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x = a_i$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a_i = x$ are always false; inequalities $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a_i < a_j$ and equalities $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a_i = a_j$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x = x$ likewise do not depend on the choice of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} x$. As such, $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q$ observes the same evaluation for $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'(1, \ol a)$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'(2, \ol a)$. Hence by construction of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$, uh, $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q_A$ observes the same evaluation for $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi(1)$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi(2)$. Thus the types in question are equal. (pt2) Let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma$ be an automorphism of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \bb Q$ sending 1 to 2. Let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} 1 < x < 2$. Then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma(1) < \sigma(x) < \sigma(2)$, so $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} 2 < \sigma(x)$ by replacement. Let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} 2 < \underset{\in A}a < \sigma(2)$; such an $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} a$ must exist because elements of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$ get arbitrarily close to 2. Then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma^{-1}(2) < \sigma^{-1}(a) < \sigma^{-1}(\sigma(2))$, so by replacement $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} 1 < \sigma^{-1}(a) < 2$ so $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma^{-1}(a) \in (1, 2)$. But $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A \cap (1, 2) = \varnothing$, so $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma^{-1}(a) \notin A$, so $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \sigma$ does not fix $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$. Contradiction!
4.5.3
Show that if $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a, \ol b \in \cl M^n$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(\ol a / A) = \t{tp}^\cl M(\ol b / A)$ then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(\ol a / \t{dcl}(A)) = \t{tp}^\cl M(\ol b / \t{dcl}(A))$ where $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{dcl}$ denotes the definable closure Answer revised since previous submission Assume $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol b$ have the same type over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$. Take $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ in the type of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{dcl}(A)$. Then we know $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ is an $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n$-ary $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_{\t{dcl}(A)}$-sentence true of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M_{\t{dcl}(A)}$. Constant symbols in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ are either from $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L$, are from $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$, or are from $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{dcl}(A) \setminus A$. We can remove constants of the third kind by using the fact that they are definable from $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$. In doing so, we obtain an $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n$-ary $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_A$-formula true of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M_A$. (For instance, on $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L = \{ + \}$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M = (\bb Z; +)$ the $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_{\t{dcl}(\{0, 1\})}$-sentence $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \theta(x) : x = -3$becomes the $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_{\{0,1\}}$-sentence $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \theta(x) : (\forall s)(s + (1 + 1 + 1) = 0 \to x = s)$.) Apply this process to $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ and call the result $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$. Since $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$ is true of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M_A$ then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi'$ is in the type of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a$ over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$, and so it is in the type of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol b$ over $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A$ (since they are equal). Now reversing the same process as before, re-introduce constants in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{dcl}(A)$ to conclude that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \phi$ is true of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol b$ in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M_{\t{dcl}(A)}$; done.
4.5.10
Suppose $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} A \subseteq B$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \theta$ is a formula with parameters $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \ol a \in A^{<\omega}$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \theta$ isolates $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(\ol a/B)$. Show that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \theta$ isolates $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(\ol a/A)$. Answer added since previous submission Since $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \theta$ isolates $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(\ol a / B)$ then for each $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_B$-formula $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \psi = \psi(\ol v)$ for which $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M_B \vDash \psi(\ol a)$ we know $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl M_B \vDash (\forall \ol v : \theta(\ol v) \to \psi(\ol v))$. This universal applies in particular to formulas from $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(\ol a/A)$, considering $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_A$-formulas as a subset of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L_B$-formulas. Hence $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \theta$ isolates $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \t{tp}^\cl M(\ol a/A)$.
4.5.13
Take $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \Delta$ a set of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} \cl L$-formulas closed under conjunction, disjunction, and negation; define $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} S_n^\Delta(T) := \{ \Sigma \subseteq \Delta : \Sigma \cup T \t{ satisfiable and containing either } \phi \t{ or } \neg \phi \t{ for each } \phi \in \Delta \}$ Answer not completed, hehe
(a) Show that when $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} p \in S^\Delta_n(T)$ exists a superset $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} q \in S_n(T)$
(b) Suppose that for each $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} n$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} p \in S^\Delta_n(T)$ exists a unique supsetset $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small {#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} q \in S_n(T)$. Show that $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } % magnitude etc \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % cardinality \newcommand{\card}{ \t{cd} } % disjoint untion \newcommand{\dcup}{ \sqcup } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % tuples \newcommand{\tup}[1]{ \langle {#1} \rangle } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } \newcommand{\pre}[1]{{ \small `{#1} }} \newcommand{\injects}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } % category names \newcommand{\cat}[1]{{ \bf{#1} }} T$ has quantifier elimination.