Take a group G acting on set A. Then for each a∈A, its stabilizer is the set of all elements g∈G which fix a; ie,
stabG(a)={g∈G∣g∙a=a}
For
G acting on A, each stabilizer
stab(a) is a
subgroup of
GProof that
stab(a) satisfies the
group axioms:
Since
1∙a=a, then
1∈stab(a)
Take
g1,g2∈stab(a). Then
(g1g2)∙a=g1∙(g2∙a)=a, so
g1g2∈stab(a).
Take
g∈stab(a). Then
g−1∙a=g−1∙(g∙a)=(g−1g)∙a=a, so
g−1∈stab(a).