The Yoneda Lemma
There are two distinct theorems called “the Yoneda Lemma”
Statement (Theorem 1)
Let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} C$ be a locally small category, and let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F : C \to \cat{Set}$ be a functor. Then for every $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A \in C$ exists a bijection $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{Hom}(\text{Hom}(A, -), F) \cong_\cat{Set} F(A)$ Here $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{Hom}(A, -)$ is the covariant hom-functor represented by $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} A$ and $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{Hom}(\text{Hom}(A, -), F)$ is the set of natural transformations $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{Hom}(A,-) \Rightarrow F$. Hence we are drawing a one-to-one correspondence between natural transformations $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \alpha : \text{Hom}(A, -) \Rightarrow F$ and values $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} a \in F(A)$. I think of this as telling us that an element of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F(A)$ is ‘essentially the same thing as’ or perhaps ‘just as good as’ a natural transformation $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{Hom}(A, -) \Rightarrow F$. This bijection is given in particular by the following two mappings. We have % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \begin{align*} & \Phi : \text{Hom}(\text{Hom}(A, -), F) \to F(A) \\ & \Phi(\alpha) = \alpha_A(1_A) \end{align*} and in the other direction we have % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \begin{align*} & \Psi : F(A) \to \text{Hom}(\text{Hom}(A, -), F) \\ & \Psi(a)_c = F(f)(a) \end{align*} Note the subscript $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} {}_c$; this is because each $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \Psi(a)$ is a natural transformation: we are defining it component-wise.
Statement (Theorem 2)
For a category $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} C$, let $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \yo : C \to \text{Fun}(\text{Set}, C^\text{op})$ be given by % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \begin{align*} \yo(c) &= C(-, c) \\ \yo(f : c \to c') &= (f \circ - : C(-,c) \Rightarrow C(-,c')) \end{align*} then $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \yo$ is a full and faithful embedding. Conceptually what this gives us is a correspondence between morphisms in $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} C$ and natural transformations between represented functors of $% shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. f(\apar) usually denotes the function x \mapsto f(x) \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small {#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} C$.