Representable Functors
Definition
For a functor F:CSet % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F : C \to \cat{Set}, we say that F % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F is represented by a value cC % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} c \in C iff FMor(c,) % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F \cong \text{Mor}(c, -) ie, F % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F is naturally isomorphic to the post-composition mor-set functor on c % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} c. Likewise, for F:CopSet % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F : C^\text{op} \to \cat{Set} (ie, F % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F contravariant) we say it’s represented by cC % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} c \in C iff FMor(,c) % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F \cong \text{Mor}(-, c) Note that this is not a separate definition, but follows from the first since MorCop(,c) % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{Mor}_{C^\text{op}}(-, c) is the same as MorC(c,) % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{Mor}_C(c, -). My current understanding is that a functor F:CSet % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F : C \to \cat{Set} is represented by c % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} c if values vF(a) % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} v \in F(a) are “basically just” morphisms ν:ca % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \nu : c \to a (or morphisms ν:ac % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \nu : a \to c for the case when F % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} F is contravariant).
Examples etc
idSet % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \text{id}_\cat{Set} is represented by any singleton Set % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \star \in \cat{Set}
The forgetful functor U:GrpSet % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \cl U : \cat{Grp} \to \cat{Set} is represented by the object ZGrp % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \bb Z \in \cat{Grp}.
The forgetful functor U:RingSet % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \cl U : \cat{Ring} \to \cat{Set} is represented by the object Z[x] % shorthands \newcommand{\cl}[1]{ \mathcal{#1} } \newcommand{\sc}[1]{ \mathscr{#1} } \newcommand{\bb}[1]{ \mathbb{#1} } \newcommand{\fk}[1]{ \mathfrak{#1} } \renewcommand{\bf}[1]{ \mathbf{#1} } \renewcommand{\sf}[1]{ \mathsf{#1} } % category names \newcommand{\cat}[1]{{ \sf{#1} }} % more shorthands \newcommand{\floor}[1]{ { \lfloor {#1} \rfloor } } \newcommand{\ceil}[1]{ { \lceil {#1} \rceil } } \newcommand{\ol}[1]{ \overline{#1} } \newcommand{\t}[1]{ \text{#1} } \newcommand{\norm}[1]{ { \lvert {#1} \rvert } } % norm/magnitude \newcommand{\card}{ \t{cd} } % cardinality \newcommand{\dcup}{ \sqcup } % disjoint untion \newcommand{\tup}[1]{ \langle {#1} \rangle } % tuples % turing machines \newcommand{\halts}{ {\downarrow} } \newcommand{\loops}{ {\uparrow} } % represents an anonymous parameter % eg. $f(\apar)$ usually denotes the function $x \mapsto f(x)$ \newcommand{\apar}{ {-} } % reverse-order composition %\newcommand{\then}{ \operatorname{\ ;\ } } \newcommand{\then}{ {\scriptsize\ \rhd\ } } % Like f' represents "f after modification", \pre{f} % represents "f before modification" \newcommand{\pre}[1]{{ \small `{#1} }} % hook arrows \newcommand{\injects}{ \hookrightarrow } \newcommand{\embeds}{ \hookrightarrow } \newcommand{\surjects}{ \twoheadrightarrow } \newcommand{\projects}{ \twoheadrightarrow } % good enough definition of yoneda \newcommand{\yo}{よ} \bb Z[x]